Functional analysis of a mouse brain Elk-type K+ channel.

نویسندگان

  • M C Trudeau
  • S A Titus
  • J L Branchaw
  • B Ganetzky
  • G A Robertson
چکیده

Members of the Ether à go-go (Eag) K+ channel subfamilies Eag, Erg, and Elk are widely expressed in the nervous system, but their neural functions in vivo remain largely unknown. The biophysical properties of channels from the Eag and Erg subfamilies have been described, and based on their characteristic features and expression patterns, Erg channels have been associated with native currents in the heart. Little is known about the properties of channels from the Elk subfamily. We have identified a mouse gene, Melk2, that encodes a predicted polypeptide with 48% amino acid identity to Drosophila Elk but only 40 and 36% identity with mouse Erg (Merg) and Eag (Meag), respectively. Melk2 RNA appears to be expressed at high levels only in brain tissue. Functional expression of Melk2 in Xenopus oocytes reveals large, transient peaks of current at the onset of depolarization. Like Meag currents, Melk2 currents activate relatively quickly, but they lack the nonsuperimposable Cole-Moore shift characteristic of the Eag subfamily. Melk2 currents are insensitive to E-4031, a class III antiarrhythmic compound that blocks the Human Ether-à-go-go-Related Gene (HERG) channel and its counterpart in native tissues, IKr. Melk2 channels exhibit inward rectification because of a fast C-type inactivation mechanism, but the slower rate of inactivation and the faster rate of activation results in less inward rectification than that observed in HERG channels. This characterization of Melk currents should aid in identification of native counterparts to the Elk subfamily of channels in the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution and functional properties of human KCNH8 (Elk1) potassium channels.

The Elk subfamily of the Eag K+ channel gene family is represented in mammals by three genes that are highly conserved between humans and rodents. Here we report the distribution and functional properties of a member of the human Elk K+ channel gene family, KCNH8. Quantitative RT-PCR analysis of mRNA expression patterns showed that KCNH8, along with the other Elk family genes, KCNH3 and KCNH4, ...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Neuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population

Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.

We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 1999